Selection rules for the photoionization of diatomic molecules
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In the photoionization of the diatomic molecule AB to yield AB* + e~ the photoelectron
may be charatcterized by a partial wave expansion in terms of its orbital angular momentum
quantum number /. For a given value of /, conservation of angular momentum implies that

transitions can only occur for AJ =1 + 3,1 + 1, ...

y—1—13, —1—3, whereAJ=J" —Jis

the change (half-integer) in the total angular momentum (excluding nuclear spin) of the
AB ™ ion rovibronic level and the AB neutral rovibronic level. Other selection rules are

AQ= —A 43 =4 +}...

y —A—jandAM = —m,+3, —m;+}.., —m —3iIn

addition, for Hund’s case (a) and case (b) coupling, AS=S§* —S§= +1,AZ = +1 and
AA = — A, — A + 1. Parity selection rules have been derived for transitions connecting levels
described by one of the four coupling schemes, Hund's case (a), case (b), case (c), and case
(d). In particular, for a case (a)—case (a) transition, AJ — AS + Ap + As + / = odd, where
the symbols have their traditional spectroscopic meanings. The parity label p = 0,1 has been
associated with the e, f label, from which it may be shown that (e/f )< (e/f) for

AJ — 1+ I=odd and (e/f )« ( f/e) for AJ — | + | = even. It also follows that + < + for/
odd and + < T for / even. Moreover, £* is connected to £+ in general, but £+ is only
connected to 2F for />2 and A = + 1 (7 wave). For homonuclear diatomics, the additional
selection rules are (g/u)<>(g/u) for / = odd, (g/u)«>(u/g) for [ = even, and (s/a)«(s/a)

but (s/a)<~(a/s).

I. INTRODUCTION

Bound-bound transitions in diatomic spectroscopy
obey well-known selection rules, that is, relations that must
hold between the quantum numbers of the upper and lower
states in order for the transitions to be allowed.' Some of
these selection rules are general and exact, such as the
change of parity between two combining states for an electric
dipole transition. Other selection rules are only approxi-
mate, such as the conservation of spin multiplicity between
two combining states, The validity of these approximate se-
lection rules depends on how well the upper and lower states
of the diatomic molecule follow various idealized angular
momentum coupling schemes. Nevertheless, selection rules,
exact and approximate, greatly simplify the task of establish-
ing which transitions can occur between various energy lev-
els of a diatomic molecule.

In this paper we seek to find the selection rules of a
bound—free transition in which a diatomic molecule AB un-
dergoes the electric-dipole-allowed photoionization process
AB + hv—AB"' + e~ .Lettheinitial state of the AB mole-
cule be denoted by |nJMp), where J is the rotational quan-
tum number, M the magnetic quantum number, p the parity,
and » all other quantum numbers and labels needed to speci-
fy the state. We use a similar notation for the final state of the
AB™ ion, namely, |n* J* M p* ). In what follows we
develop expressions for the changes in the rotational quan-
tum numbers allowed in photoionization, i.e., we find the
allowed values for AJ=J" —J, AM=M* —M,
Ap=p™* —p, etc. We first restrict our attention to those
cases in which the initial state of AB and the final state of
AB™ belong to Hund’s case (a) coupling. Then we discuss
generalizations.
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Previous one-photon photoionization experiments have
seldom been able to determine the rotational selection rules
governing this process. There are two major causes for this
failure. First, the levels of the AB molecule are normally
populated in some thermal manner that prevents a single
rovibronic level to be isolated for study by one-photon pho-
toionization. Second, there is the difficulty of monitoring the
population distribution of the various vibronic levels of
AB™ produced in the photoionization process. Often the
kinetic energy of the photoelectron is analyzed, but photoe-
lecron spectroscopy (PES) seldom has sufficient resolution
to observe individual rotational levels of the ion. An impor-
tant exception is the rotationally resolved photoelectron
spectrum of H, in one-photon ionization, first observed in
1970 by Asbrink.? This rotational resolution results from
the large rotational spacings in H, and H,".

Recently, interest in rotational selection rules in pho-
toionization has been spurred by the use of resonance-en-
hanced multiphoton ionization (REMPI). Here an n-pho-
ton absorption step selects a single rovibronic level of an
intermediate state. This step is followed by a one-photon
bound-free transition causing photoionization of the inter-
mediate. The resulting final states of the ion can then be
determined in favorable cases either by photoelectron spec-
troscopy’® or by laser-induced fluorescence (LIF).®” Par-
ticularly noteworthy is the detection of zero kinetic energy
(ZEKE) photoelectrons in coincidence with the detection
of the photoion.® This new technique has a resolution of
about 1 meV. When applicable, LIF can provide even higher
resolution (10~ * meV or less).

It appears that little theoretical attention has been paid
to the selection rules for photoionization. Dixit and
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McKoy® have derived the parity selection rule when the
transition connects two Hund’s case (b) states. They have
also stated without derivation the selection rule when the
transition connects two Hund'’s case (a) states. We also note
that Dehmer and co-workers® presented selection rules for
their photoelectron spectra in the resonance-enhanced mul-
tiphoton ionization of H,. Here the final countinuum state
was treated as case (d) coupling between the ion core and
the photoelectron. In this paper, we derive a complete set of
selection rules for photoionization when the initial state of
AB and the final state of AB* belong to either case (a), case
(b), case (c), or case (d). We also discuss how the selection
rules may be derived for intermediate coupling cases.

Il. DERIVATION OF SELECTION RULES

In order to establish which bound-bound transitions are
allowed, it is necessary to examine the transition dipole ma-
trix element( f |u|/) and determine under what conditions
this matrix element is nonvanishing.' Here | /) and |i) are
the wave functions of the upper and lower bound states and
p is the electric dipole moment operator. Similarly, for a
bound-free transition causing photoionization we must ex-
amine the expression

( f|w|i) = (ion|(photoelectron|p|neutral), (N

where|neutral) is the initial state wave function of the AB
neutral, and |ion) and |photoelectron) are the wave func-
tions of the final state of the AB* ion and the final state of
the ejected photoelectron.

A. Angular momentum selection rules

It is convenient at this point to suppose that the wave
functions of AB and AB™* follow one of three well-known
angular momentum coupling schemes,"'® first introduced
by Hund and later referred to as Hund’s case (a), case (b),
and case (c). Then the wave functions have particularly sim-
ple forms, listed in Table I, where the angular momentum
quantum numbers have their usual meanings. It is also con-
venient to express the photoelectron wave function either in
an uncoupled representation

|photoelectron) = |Im,)|s.m.) (2a)
or a coupled representation
|photoelectron) = |jm;)
== Em.ﬁ”?. (!mhse mg Um;>
X |Im;)|s.m.), (2b)

TABLE 1. Wave functions for the four different Hund's coupling cases.

Coupling case Wave function

case (a) \n JOM ASS) = |JOM )|nA)|SZ)

case (b) |n NAM, ASMg) = |[NAM, ) |nA)|SMs)TL
case (c) [n JOMY = |JOM )|nQ)

case (d) InNAM,, lym, SMg)

= [N A My A |lgmig ) |SMs)
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where (Im;,s.m,|jm;) is a Clebsch-Gordan coefficient.
Here / represents the orbital angular momentum of the elec-
tron, s, its spin angular momentum (s, = }), and m, and m,
are the projections of 1and s, on the space-fixed Z axis. We
denote by 4 and o the projections of 1and s, on the molecule-
fixed z axis, which is taken to coincide with the internuclear
axis.

The general procedure in determining the selection
rules resulting from the conservation of angular momentum
is to substitute in Eq. (1) the appropriate bound state wave
functions from Table I for |neutral) and |ion) and also to
substitute into Eq. (1) the coupled or uncoupled representa-
tion for |photoelectron) consistent with the coupling
scheme in the molecule and the ionic core. The evaluation of
Eq. (1) then leads to a product of a number of Clebsch—
Gordan coefficients or equivalently 3-j symbols, all of which
must be nonvanishing for the transition to occur. Table 11
collects the resulting selection rules for transitions between
the three different coupling cases.

Let us illustrate how Table I was generated by working
out explicitly the selection rules when AB and AB™* both
follow case (a) coupling. We have

(ion|=(n*t JTQ*M*+ A*STZH|, (3a)

(photoelectron| = {Im,|{s.m,|, (3b)
and

|neutral) = |[n JOAM ASZ). (3c)

Substitution of Egs. (3a), (3b), and (3c) in Eq. (1) yields
(ion|(photoelectron|p|neutral)

=Y I (Lo, (Aou)l; (Aou), (4)

Ao

TABLE II. Angular momentum selection rules for photoionization of a
diatomic molecule.

Allowed transitions

(final state)—(initial state) Selection rules

all coupling cases AJ=1+ 414} . —1-3
M= —m 44 —m+4—m—14

and —m; —3}

AA= —A +1,—-4, —4A-1
AS= +)
AZ = 4]

case (a)—case (a)
case (a)-case (b)
case (b)—case (a)
case (b)—case(b)

case {a)—case (a)
case (c)—case (c)
case (c)—case (a) or
case (a)-case (c)
case (c)—case (b)
case (b)—case (c)

A= -4 4+ —A 44 —-4-—},
and —A—3}

A= —o+ 1, -0, —-w—1

case (b)—case (b) AN=Il41Lk..,—1~1

case (d)—case (d) AMy=—m+1,—m, —m —1
AM; = + i

case (b)—case (d) N=N"*
l—l,=+1
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where I, effects the transformation from the laboratory-
fixed to the molcule-fixed frame,

Il {/I:J,;t)
= [ [ [1pt:5. wowD s, B8P3 B00]*
XD)* (8,0,0)D{%,(8,0,y)dé sin 6 d6 dy, (5)

I, contains the angular dependence of the integral over the
electronic coordinates,

L(Aou)=(A*S *Z*|(I1|{s.0]Y,,(Bx)(ASZ), (6)

and I,(A,o,u) is a radial integral.
The evaluation of /, is readily carried out using standard
angular momentum coupling machinery:'®

JH f J, R j
ey sl e )
fomp —MJ)\m mg  —m,

fl

(J 1 )(J+ i )
X
M u, —M/\QY o =4,

(iscj)(.fl J,) ;
X o —ol\a u —0) (7)

where K is a proportionality constant and J, is the quantum
number of the total angular momentum of the system, which
makes the space-fixed projection M, and the molecule-fixed
projection £, . We have also introduced in Eq. (7) the quan-
tum number of the total angular momentum of the photo-
electron in the coupled representation, j, which makes the
space-fixed projection m; and the molecule-fixed projection
w.

In order for Eq. (7) not to vanish, it is necessary that
Jt=J 45 i +j=1,., I, —=jl and J, =J T+ 1. It
follows that

Al=J*' —J=j+1,j,..,—j— 1. (8)
Becausej=/+45 =141,
AJ=1+314+4,..,—1-1 &))]

For the space-fixed projections of the first three 3-j symbols
in Eq. (7), it follows that

M* =M —m; =M+ p,—m —m, (10)
so that
AM=M"*" —-M=p,—m, —m,. (11)

Thus, AM ranges in unit steps from —m, +3to —m;, —3,
where m, has been replaced by its value of + i, and , by its
value of 0, + 1. For the molecule-fixed projection, the last
three 3-j symbols in Eq. (7) show that

Q' =Q, —o=0+p—A4—o0, (12)
so that
AQ=Q" —Q=pu—A—o. (13)

Thus, AQ ranges in unit steps from —A+4+3to —A4 —3,
where o has been replaced by its value of 4} and u by its
value of 0, + 1.

The I, integral can be further divided into two parts by
an approximation in which the spin part |SZ) can be fac-
tored from the total electronic part of the case (a) wave
function |[ASE). Then we have

L= (A*|(IA|Y,,|A)(S * = *|(5,0|SZ)

=K'"(A*|(A|Y, |A)(S+ f 8 ) (14)
wEEAEH g =3

Thus both electronic orbital angular momentum and elec-
tron spin angular momentum are conserved. The function
|A) is proportional to exp( — iA¢), where ¢ is an azimuthal
angle measured around the internuclear axis. For the inte-
gration over the azimuthal angle not to vanish,
—A" —A +p+A=0.Thus, AA=A"T —A=1+pu
and it follows that AA rangesinintegral stepsfrom — A + 1
to — A — 1. From the properties of the 3-j symbol in Eq.
(14),8" =s_ + S, so that

AS=S*_S=+} (15)
since s, = §. It also follows that £+ + o — X =0, so that
AZ=32%* _Z= 414 (16)

This completes the derivation of angular momentum selec-
tion rules for a case (a)—case (a) transition. Note that the
case (a) wave functions form a complete basis set. There-
fore, the selection rules for transitions between any two di-
atomic states can be worked out using the above results if the
initial state and final state wave functions are first expressed
as linear combinations of the case (a) basis states. In a simi-
lar manner, the angular momentum selection rules for other
coupling cases can be derived.

Of special interest is the situation where the initial state
is a Rydberg state that is well described by Hund'’s case (d)
coupling. Here the Rydberg electron is atomic like and is
characterized by the quantum numbers /;, m,;,. The ion
core has the quantum numbers N, A, My, . Wedenoteby S
the total spin of the bound state and by M its space-fixed
projection. Suppose that the final state of the ion is described
by case (b) coupling. Then the electronic dipole matrix ele-
ment is proportional to

(NTATM (AT (S T M [(Imy| (sem, |w|NA My )

X|AD [Igmz ) |SM5s). ) (17)
We make the additional assumption that p is dominated by
the motion of the Rydberg electron so that the angular de-
pendenceof pis Y, (6g,#5). Then Eq. (17) may be rewrit-
ten as proportional to

(N+A+M}¢ INrAcMNc)(A+ |Ac)(S+M.S_"—|(sem:|SMS)

X(’m1|yn,.o(3m¢a)l’smm)- (18)
Examination of this expression shows that A* = A_,
N* =N, and MJ =M, ie, the ionic core is un-

changed by photoejection of the Rydberg electron, as ex-
pected. Moreover, spin conversation gives the same result as
Eq. (15) while the last integral in Eq. (18) reveals that
I — I = 4+ 1, the familiar atomic selection rule. Conse-
quently, when it is possible to select the initial state as a case
(d) Rydberg state, the resulting ionic state will have the
same rotational quantum numbers as the ionic core of the
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Rydberg state. This can provide in principle a unique selec-
tion of the final ion state resulting from electric-dipole-al-
lowed photoionization.

B. Parity selection rules

Each wave function associated with an energy level may
be classified as having even or odd parity according to
whether it remains unchanged or changes sign or inversion
of the spatial coordinates of all particles through the origin.
Only states of opposite parity can be connected by an electric
dipole transition, i.e., the overall parity of the electric dipole
matrix element must be even. From this we derive the parity
selection rules for electric-dipole-allowed photoionization.

The effect of the parity operator i,, on different parts of
the wave function has been worked out in detail else-
where.'®'! We present here the results we need. In particu-
lar, for a case (a) wave function

i, JOM) = (— 1)~ — M),
i |nA) =(—1D***n—A),
i, |SZ) =(—1)5"*§-3),

where s = 0, except for £ ~ states in which case s = 1. This
allows us to introduce a case (a) basis set with well-defined
parity. These parity-adapted wave functions have the form

In JOM ASZ p) = (1/{2)[|JQM }|nA)|SE) + (— 1)P

X|J—QM)|n—A)|S—2)],
(20a)

where p is the parity quantum number (p = G or 1), and for
the special case A =0, £ =0,

(19)

|n JOM 0SO p) = |JOM )|n0)|S0), (20b)
where p = 0. When i, acts on the wave function shown in
Eq. (20), we find that the total parity of the wave function is
given by

P:(_I}J—S-+.r+p. (21}

We also need the parity of the photoelectron wave func-
tion. It is readily shown that

TABLE I11. Parity wave functions for the four different Hund’s coupling cases.
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isp“mf) = ( = l)rllm.‘)

and

(22a)
iy lsem,) = |s.m,). (22b)

Finally, we note that the electric dipole moment operator is
an odd function of the spatial coordinates so that
i,p= —p (23)
We consider next the electric dipole moment matrix ele-

ment between states of well-defined parity, using our case
(a) parity-adpated wave functions:

(flul) =(n* J*Q+*M* A*S+Z+ p*|
X (Im;|(s.m,|p|n JAM ASZ p). (24)

For this matrix element not to vanish its parity must be even.
Application of Egs. (19), (22), and (23) shows that this
condition implies that

Jtr—St4+st +pt+1+14+J—8 +s+p=even.

(25a)
Alternatively, this condition can be expressed as
T =D — (S =8+ (st —»)
+(@* —p)+1=o0dd (25b)

Equation (25) tells us whether an even partial wave or an
odd partial wave is responsible for a transition with a given
AJ, AS, As, and Ap. This result agrees with the parity selec-
tion rule given in Eq. (2) of Ref. 9, as well as Eq. (13) of
Raseev and Cherepkov.'?

Because any wave function can be written as a linear
combination of case (a) wave functions, it is possible to de-
rive the parity selection rules for electric-dipole-allowed
transitions between any two levels of a diatomic molecule.
We find it useful to consider some selected transitions be-
tween levels that are well described by Hund’s case (b), case
(c), or case (d). We present in Table III the parity-adapted
wave functions for each coupling case. We also make use of
the fact that for case (c) wave functions when §} is half inte-
gral,

i, |nQ) =(—1D*""*n-Q), (26)

Coupling case Parity wave function

Parity

case (a) AN [[JAM)Y | nAYSE) + (— P — MY n— A)[S—3)] (= 1)/ =S+p+>
forA=0 |n JOM 0S0) above withp =0
and 2 =0
e () (I42) [INAMy)|nA) + (= DTIN = AM,)|n = A) }ISMs) (=DM
for A=0 |NOM,, )| n0)|SM) above with p =0
case (c) A2 [|JOM ) [nQ) + (= 1D — QM ) |n — Q) ] Jzigteger,
( — l} +p+s
J = half-integer,
(—~ l).f—lf’2+p +5
for1=0 [JOM ) |10} above withp =0
case (d) AAD[INAM) ALY + (= DPIN, — A M) n—A)] (= DhTeres
[lamig )| SM) .
for A, =0 |N.OM y, )| 1O I . Y| SMs) above with p =0
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where we adopt the convention of Kopp and Hougen'* for
half integers. Similarly, for half-integral j this implies that

ispUmj) =(- l}j_lﬂumj) (27)
for the photoelectron wave function when it is expressed in
the coupled representation. The parity of the electric dipole
moment matrix element is readily evaluated, and results are
collected in Table IV. Please note that for Hund’s case (c¢)
s = 0 for all states except 0™, in which cases = 1.

A key point is to relate the value of p to the two A doub-
lets in case (a) and case (b) coupling, or the two () doublets
in case (c¢) coupling. These components may be labeled as e
or fusing the following definitions:'*

for integral J values:

levels with parity P= + ( — 1)’ are e levels,

levels with parity P= — (- 1)” are f levels;
and for half-integral J values:

levels with parity P= + ( — 1)’ "? are e levels,

levels with parity P= — ( — 1)’ % are f levels.
Thus, the e and f levels transform in the same way as the
rotational levelsof ' * ,?2 + ,and 'S~ , *Z ~, respectively.
Examination of the parity-adapted wave functions for the
four different Hund’s coupling cases leads to an association
of the e and f labels with the different values of the good
quantum numbers. The results are listed in Table V. This
identification of the e and f levels with the different A doub-
lets and ) doublets is extremely useful for the analysis of
open-shell diatomic molecules.

It is also convenient to classify the parity of a level as
simply “ + > or “ — .” It follows from Eq. (25) that
+ <>+ for /7 odd (28a)
and
(28b)

Here / should be replaced by j — | when the photoelectron is
described in its coupled representation. Because we can asso-
ciate the e and f labels with their parities, as shown in Table

+ < F for [ even.

TABLE IV. Partity selection rules for photoionization of a diatomic molecule.
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TABLE V. Relations between e/f labels and p + s values.*

Coupling case  Label p+s Quantum number relation
case (a) e 0 Sor§—]=even
f 1
e 1 Sor§—}=odd
f 0
case (b) e 0 i—Sori—S—}=o0dd
f 1
e 1 i—Sori—S—}=even
Vi 0
case (c) e 0
f 1
case (d) e 0 (k+i~8or(k+i—S+})=even
f 1
e 1 (k+i-S)or(k+i—5+1i)=odd
f 0

* Here i numbers the spin multiplicity of the rotational level ¥. The index ¢
runs from 1 to 25 + | and satisfies the relation N=J+ i — S — 1. The
index k numbers the multiplicity resulting from the Rydberg electron /,, in
rotational level N_; it runs from 1 to 2/, + 1, and it satisfies the relations
N.=Ntk—Ily—landN, =J+i+k—S—1Iz +2.

V, we can also write the selection rules
(e/f)—(e/f) for AJ—1+[=o0dd, (29a)

(e/f)=(f/e) (29b)

where AJ =J+ — Jis always half integral in photoioniza-
tion.

One additional selection rule emerges when the pho-
toionization process connects two X states in case (a) or (b).
For simplicity we use the parity-adapted case (a) basis set,
Eq. (20b). Then, Eq. (24) factors into an integral over the
electronic coordinates times an integral over the rotational
coordinates. (Note that this is not true when A50.) In par-
ticular, the electronic integral has the form

(A* =0|Y,_,Y,,|A=0).

for AJ— 1+ /= even,

(30)

Allowed transition
(final state)—(initial state)

Selection rule

case (a)—case (a)
case (a)—case (b)
case (b)-case (a)
case (b)—case (b)
case (a)—case (d)
case (b)—case (d)
case (c)-case (c)
case (b)—case (c)
case (a)-case (c)
case (c)-case (b)
case (c)~case (a)

(' =DN~(S* =8+ (" —p)+(s" —s)+/=0dd
[N' —(J=8)]+(p" —p)+(s* —s)+/=o0dd
[(J*—8S*)=N]+(p* —p)+(s* —s)+I=0dd
(N'"—Ny+(p* —p)+(s" —s) +/=odd

[ =8*)—(N.+1)]+(p* —p)+(s* —s) +/=0dd
[N* =N+ ]+t —p)+(s" —s) +I=o0dd
=N+ @(p*—pl+ (s —s)+/=odd

(N* =D+ (p* —p)+(s* —s) +I=0dd

[ =S*)=D]+(p" —p)+(s* —s) +[=0dd
(Y =N")+(p" —p)+ (s —s) +/=odd’

V"= (J+9]1+ (" —p)+(* —s)+/=o0dd"

* Here we may also choose the coupled scheme for the photoelectron wave function because the ion core follows

Hund’s case (c). Then /is replaced by j — i.
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Here 4 =0,4+1 and A = — u. Upon applying i,, to Eq.
(30), (A* = 0] contributes a phase factor ( — 1)*", and
|A = 0) a phase factor ( — 1)*. However, ¥, _, ¥, is gen-
erally not a parity eigenfunction but is even under the condi-
tions that A= —u=00rdA= —pu= F1for /= 1. For
Eqg. (30) to be nonvanishing, As=s* —s=0,1i.e,
pIESHG,
IEHIF,
except [>2and A= + 1.

(31a)
(31b)

C. Additional selection rules for homonuclear
diatomics

When the two nuclei are identical, the electronic states
of the homonuclear diatomic molecule may be further classi-
fied as gerade (g) or ungerade (u), depending on whether
the electronic wave function is unchanged or changes sign
upon inversion of the electronic coordinates in the molecular
frame. In addition, the rotational levels may be classified as
symmetric (s) or antisymmetric (@) upon exchange of the
nuclei. The result of introducing these additional symmetry
labels is that electric-dipole-allowed photoionization has the
added selection rules

(g/u)<>(g/u) for I odd, (32a)

(g/u)<>(u/g) for I even, (32b)
and

(s/a)«>(s/a), (33a)

(s/a)<>(a/s). (33b)

These selections are readily derived using the treatment pre-
sented in the previous section on parity selection rules by
including the effects of the nuclear permutation operator on
the identical nuclei, which is equivalent to the spatial inver-
sion of all molecular coordinates followed by the spatial in-
version of the nuclei."”

ill. CONCLUDING REMARKS

In this paper we have presented the selection rules for
electric-dipole-allowed photoionization of a diatomic mole-
cule when the initial state is a single rotational level. We have
shown what final rotational levels of the ion can be accessed
and how these levels are related to each partial wave of the
photoelectron. The derivation given is general and the re-
sults of many special limiting coupling cases have been
worked out. This treatment is readily extended to two-pho-
ton and higher-order photon transitions, if desired. It also
applies to photodetachment of negative ions.

The selection rules are given in terms of nomenclature
for diatomic molecules, However, these results can be direct-
ly generalized to linear polyatomic molecules (with C_, or
D_ , symmetry) provided that the ion state is also linear. It
is also possible to extend this treatment to more complex
situations, such as when the initial and final states are de-
scribed by symmetric top wave functions. So far, these con-
siderations have been restricted to photoionization where an
electron with orbital angular momentum / and spin angular
momentum s, is ejected. Another possible extension of this
work is to replace the electron by a composite particle (frag-
ment) having both internal and orbital angular momentum.
In this manner it may be possible to derive selection rules on
photofragmentation, such as what states are possible when
for example a linear triatomic molecule dissociates into an
atom and a diatomic molecule.
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